
Week 1 - Wednesday

 What did we talk about last time?
 Course overview
 Policies
 Schedule
 GNU style
 Systems

 You might recall that the sizes of integer types in C are a little bit
mushy:
 short: at least 2 bytes
 long: at least 4 bytes
 int: between the size of short and long

 This can be frustrating when you need a type to hold a specific
amount of data

 In Java, the sizes of types are fully specified
 short: 2 bytes
 long: 8 bytes
 int: 4 bytes

 Although it's a bit ugly, C99 specifies types with fixed sizes
 To use them, #include <stdint.h>
 Then, you're guaranteed the following:
 int8_t 1 byte (8 bits), signed
 int16_t 2 bytes (16 bits), signed
 int32_t 4 bytes (32 bits), signed
 uint8_t 1 byte (8 bits), unsigned
 uint16_t 2 bytes (16 bits), unsigned
 uint32_t 4 bytes (32 bits), unsigned

 And you probably get int64_t and uint64_t as well

 If you want to print an int, you use %d
 If you want to print an int32_t, what do you do?
 There are some (ugly) macros used:
 PRId8
 PRId16
 PRId32
 PRId64

 You can use these macros for octal or hex by changing d to o
or x, e.g. PRIx32

 To use these macros, #include <inttypes.h>
 Note that inttypes.h includes stdint.h, so you can kill two birds with one

stone
 These macros are special strings
 There's an obscure rule in C that treats consecutive strings literals like a

single string literal:
 "goats" "boats" "moats" is the same to the compiler as
"goatsboatsmoats"

 To use a macro, it has to "float" in between the rest of a formatting string

int a = 7;
int32_t b = 7;
printf ("Value: %d\n", a); // int version
printf ("Value: %" PRId32 "\n", b); // int32_t version

 Computer systems create a platform for applications
 They provide tools and environments that are needed for other

things
 They don't exist in isolation

 Computer systems have semiotics
 They use symbols for communication

 Systems entail complexity
 As they get complex, there are unintended consequences

 It's worth thinking about these themes when designing or
using computer systems

 An issue that comes up frequently when designing computer
systems is scarcity of resources:
 Computers have limited numbers of cores
 Applications have access to a finite amount of memory
 Networking bandwidth is limited
 Access to shared resources has to be controlled to prevent

applications from stopping each other's work or corrupting it
 The problem of scarcity can be approached, in part, with

tradeoffs
 Using a greater amount of one resource in order to free up another

 Space/time tradeoff
 Sometimes using more resources can allow faster execution
 Example: Buffer sizes in communication
 Example: Hash tables from data structures

 Interface abstraction
 Treating different things through a common abstraction makes a system simpler

▪ But it also prevents optimization
 Example: Linux treats networking, files, and many memory accesses like reading

and writing to files
 Security vs. usability
 Greater security always entails less usability
 Different products need the balance at different levels

 Complexity refers to systems with emergent properties
 Emergent properties are those that aren't obvious when looking

at a design
 The interactions inside a system can lead to unexpected situations
 Examples:
 There are situations where increasing the amount of system memory

worsens performance
 Deadlock is a situation where two processes trying to get access to

something make it impossible for either one to get it
 Priority inversion is a case where a high-priority process can be prevented

from running by a low-priority process

 Because of complexity, reliability is elusive
 Redundancy helps provide reliability
 Having a back-up component ready when another component fails

reduces the chance of total failure
 Sending redundant messages can make networking protocols more

reliable
 Complexity also creates misunderstanding
 It's hard to know what really causes an error
 Anyone who's debugged code knows this problem

 Semiotics means the use and interpretation of symbols
 The semiotics of a message involves:
 Syntax: Rules for making valid messages
 Semantics: The meaning of symbols
 Pragmatics: Relationship between the message and the entity

reading the message
 The semiotics of computer systems can involve

communication between two machines, a machine and a
human, or a machine and the outside world

 Communication between machines is the easiest of the three to
describe

 However, machines send and receive bits that mean nothing
without context

 Consider the bit sequence 10101110, which could be interpreted in
C as:
 Signed integer: -82
 Unsigned integer: 174
 Character: '®'
 Bitmask: 0xAE

 Humans don't understand computers at an instinctive level
 CS education is a kind of brain damage to make us think more like machines
 If you don't quite understand the semantics of a line of C or Java, you might be

surprised by the output
 But other things like the concept of "happening at the same time" mean

different things to humans and computers
 Example:
 int x = 14;
 Now, these lines of code execute on two different threads, at nearly the same time:
 x = x + 1;
 x = x – 1;
 What are the possible values of x?

 Computers are models of the real world
 We mostly ignore that and treat the computer as a kind of reality
 Problems that crop up:
 Floating-point values are only approximations of real numbers
▪ Even "simple" numbers like 0.1 can't be exactly represented with the usual system

 The values 0 and 1 are represented by voltages
▪ Occasionally, (especially when overclocking), a voltage that should be a 1 is read as a

0, or vice versa

 Cosmic rays occasionally flip bits inside our machines
 Getting machines to agree on issues of timing is difficult

 System architectures are models of systems that describe:
 Relationships between entities in the system
 Ways the entities communicate

 Different architectural styles have pros and cons
 Using a certain style can have big impacts on system performance
 Common styles:
 Client/server
 Peer-to-peer (P2P)
 Layered
 Pipe-and-filter
 Event-driven
 Hybrid

 This book considers client/server architectures
from the perspective of a many clients
connecting to a single server
 If you recall, the Software Engineering book

describes client/server as a system with many
servers, each of which offer a single service

 How does a client know how to reach the server?
 Uniform resource identifier (URI) is a common way:

www.goats.net/image.jpg
 Client/server architectures depend on protocols

to define how clients can request services and
understand the response

Server

Client 1

Client 2

Client 3Client 4

Client 5

http://www.goats.net/image.jpg

ADVANTAGES

 Updates are simple, because only the
server needs to be updated

 Only the server needs to be checked
for security problems or data
corruption

DISADVANTAGES

 Single point of failure

 To reduce the single point of failure problem, it's common to have multiple servers
that offer the same services or files

 To work, these servers must coordinate with each other when one is updated

 If more and more servers are used, the architecture
begins to look like a P2P architecture
 BitTorrent
 DNS

 In P2P, there is usually no distinction between
clients and servers, since most entities act as both

 Advantages:
 Service scales, staying the same or improving as the

number of users goes up
 Disadvantages:
 Security: A corrupted node can be hard to detect
 Administration: Propagating changes can be difficult

Node 1

Node 2

Node 3Node 4

Node 5

 Layered architectures divide systems into a strict
hierarchy of components

 Each layer can only communicate with the layer
above and below it

 Advantages:
 As long as a new layer knows how to talk to the layer

above and below, it can be swapped out with an old layer
 New layers can be added on top

 Disadvantages:
 It's hard to divide systems into hierarchical layers
 It can be inefficient to prevent one layer from talking

directly to one much lower or higher
 Some services at each layer are redundant

Persistence Layer

Services Layer

Business Layer

Presentation Layer

 Pipe-and-filter architectures send data in one direction through a series of components
 The output of one stage is the input of the next
 Each stage transforms the data in some way
 Examples:
 Linux command-line piping

 Java stream filtering
 Stages of a compiler

 Advantages:
 Good for serial data processing
 Modular components that have the same input and output can be reused in different sequences

 Disadvantage: No error recovery if something breaks in the middle

sort foo.txt | grep -i error | head -n 10 > out.txt

 Event-driven architectures react to events, changes in the state
of the system
 GUIs are a common example of event-driven architectures

 Event generator create events
 Event channels send the event to the appropriate event handlers

 Advantages:
 Adding new event generators and handlers allows for an extensible

system
 Good for reactive systems

 Disadvantage: Timing can be complicated, especially for shared
resources

Event
Generator

Event
Channel

Event
Processing

Event
Handler 1

Event
Handler 2

Event
Handler 3

 We talk about the previous architectures because they're models that
have been successful in the past

 Most real systems are a mix of different architectures
 The whole system could be one architecture, but its components have their own
 A system could be mostly one architecture but break a couple of rules
 There can be different ways of looking at the same system

 Example: OS kernel
 Event-driven because it has interrupt handlers to respond to signals from the

hardware
 Client/server because applications that make system calls are making requests
 Layered because file systems and networking operate with layers from the

generic operation down to the requirements of particular hardware

 State machines
 UML

 Form teams for Assignments 1 and 2 and Project 1 if you
haven't
 Assignment 1 is due next Friday!

 Read sections 1.5 and 1.6

	COMP 3400
	Last time
	Questions?
	Assignment 1
	Fixed Width Types
	The problem
	Fixed width types
	What about printing those things?
	Using the print macros
	Course Themes
	Themes from the book
	Scarcity of resources
	Tradeoffs
	Complexity
	Consequences of complexity
	Semiotics
	Machine to machine communication
	Machine to human communication
	Machine to world communication
	System Architectures
	System architectures
	Client/server architectures
	Client/server advantages and disadvantages
	Peer-to-peer (P2P) architectures
	Layered architectures
	Pipe-and-filter architectures
	Event-driven architectures
	Hybrid architectures
	Upcoming
	Next time…
	Reminders

