
Week 1 - Wednesday



 What did we talk about last time?
 Course overview
 Policies
 Schedule
 GNU style
 Systems









 You might recall that the sizes of integer types in C are a little bit 
mushy:
 short: at least 2 bytes
 long: at least 4 bytes
 int: between the size of short and long

 This can be frustrating when you need a type to hold a specific 
amount of data

 In Java, the sizes of types are fully specified
 short: 2 bytes
 long: 8 bytes
 int: 4 bytes



 Although it's a bit ugly, C99 specifies types with fixed sizes
 To use them, #include <stdint.h>
 Then, you're guaranteed the following:
 int8_t 1 byte (8 bits), signed
 int16_t 2 bytes (16 bits), signed
 int32_t 4 bytes (32 bits), signed
 uint8_t 1 byte (8 bits), unsigned
 uint16_t 2 bytes (16 bits), unsigned
 uint32_t 4 bytes (32 bits), unsigned

 And you probably get int64_t and uint64_t as well



 If you want to print an int, you use %d
 If you want to print an int32_t, what do you do?
 There are some (ugly) macros used:
 PRId8
 PRId16
 PRId32
 PRId64

 You can use these macros for octal or hex by changing d to o
or x, e.g. PRIx32



 To use these macros, #include <inttypes.h>
 Note that inttypes.h includes stdint.h, so you can kill two birds with one 

stone
 These macros are special strings
 There's an obscure rule in C that treats consecutive strings literals like a 

single string literal:
 "goats" "boats" "moats" is the same to the compiler as 
"goatsboatsmoats"

 To use a macro, it has to "float" in between the rest of a formatting string

int a = 7;
int32_t b = 7;
printf ("Value: %d\n", a); // int version
printf ("Value: %" PRId32 "\n", b); // int32_t version





 Computer systems create a platform for applications
 They provide tools and environments that are needed for other 

things
 They don't exist in isolation

 Computer systems have semiotics
 They use symbols for communication

 Systems entail complexity
 As they get complex, there are unintended consequences

 It's worth thinking about these themes when designing or 
using computer systems



 An issue that comes up frequently when designing computer 
systems is scarcity of resources:
 Computers have limited numbers of cores
 Applications have access to a finite amount of memory
 Networking bandwidth is limited
 Access to shared resources has to be controlled to prevent 

applications from stopping each other's work or corrupting it
 The problem of scarcity can be approached, in part, with 

tradeoffs
 Using a greater amount of one resource in order to free up another



 Space/time tradeoff
 Sometimes using more resources can allow faster execution
 Example: Buffer sizes in communication
 Example: Hash tables from data structures

 Interface abstraction
 Treating different things through a common abstraction makes a system simpler

▪ But it also prevents optimization
 Example: Linux treats networking, files, and many memory accesses like reading 

and writing to files
 Security vs. usability
 Greater security always entails less usability
 Different products need the balance at different levels



 Complexity refers to systems with emergent properties
 Emergent properties are those that aren't obvious when looking 

at a design
 The interactions inside a system can lead to unexpected situations
 Examples:
 There are situations where increasing the amount of system memory 

worsens performance
 Deadlock is a situation where two processes trying to get access to 

something make it impossible for either one to get it
 Priority inversion is a case where a high-priority process can be prevented 

from running by a low-priority process



 Because of complexity, reliability is elusive
 Redundancy helps provide reliability
 Having a back-up component ready when another component fails 

reduces the chance of total failure
 Sending redundant messages can make networking protocols more 

reliable
 Complexity also creates misunderstanding
 It's hard to know what really causes an error
 Anyone who's debugged code knows this problem



 Semiotics means the use and interpretation of symbols
 The semiotics of a message involves:
 Syntax: Rules for making valid messages
 Semantics: The meaning of symbols
 Pragmatics: Relationship between the message and the entity 

reading the message
 The semiotics of computer systems can involve 

communication between two machines, a machine and a 
human, or a machine and the outside world



 Communication between machines is the easiest of the three to 
describe

 However, machines send and receive bits that mean nothing 
without context

 Consider the bit sequence 10101110, which could be interpreted in 
C as:
 Signed integer: -82
 Unsigned integer: 174
 Character: '®'
 Bitmask: 0xAE



 Humans don't understand computers at an instinctive level
 CS education is a kind of brain damage to make us think more like machines
 If you don't quite understand the semantics of a line of C or Java, you might be 

surprised by the output
 But other things like the concept of "happening at the same time" mean 

different things to humans and computers
 Example:
 int x = 14;
 Now, these lines of code execute on two different threads, at nearly the same time:
 x = x + 1;
 x = x – 1;
 What are the possible values of x?



 Computers are models of the real world
 We mostly ignore that and treat the computer as a kind of reality
 Problems that crop up:
 Floating-point values are only approximations of real numbers
▪ Even "simple" numbers like 0.1 can't be exactly represented with the usual system

 The values 0 and 1 are represented by voltages
▪ Occasionally, (especially when overclocking), a voltage that should be a 1 is read as a 

0, or vice versa

 Cosmic rays occasionally flip bits inside our machines
 Getting machines to agree on issues of timing is difficult





 System architectures are models of systems that describe:
 Relationships between entities in the system
 Ways the entities communicate

 Different architectural styles have pros and cons
 Using a certain style can have big impacts on system performance
 Common styles:
 Client/server
 Peer-to-peer (P2P) 
 Layered
 Pipe-and-filter
 Event-driven
 Hybrid



 This book considers client/server architectures 
from the perspective of a many clients 
connecting to a single server
 If you recall, the Software Engineering book 

describes client/server as a system with many 
servers, each of which offer a single service

 How does a client know how to reach the server?
 Uniform resource identifier (URI) is a common way: 

www.goats.net/image.jpg
 Client/server architectures depend on protocols

to define how clients can request services and 
understand the response
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ADVANTAGES

 Updates are simple, because only the 
server needs to be updated

 Only the server needs to be checked 
for security problems or data 
corruption

DISADVANTAGES

 Single point of failure

 To reduce the single point of failure problem, it's common to have multiple servers 
that offer the same services or files

 To work, these servers must coordinate with each other when one is updated



 If more and more servers are used, the architecture 
begins to look like a P2P architecture
 BitTorrent
 DNS

 In P2P, there is usually no distinction between 
clients and servers, since most entities act as both

 Advantages:
 Service scales, staying the same or improving as the 

number of users goes up
 Disadvantages:
 Security: A corrupted node can be hard to detect
 Administration: Propagating changes can be difficult
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 Layered architectures divide systems into a strict 
hierarchy of components

 Each layer can only communicate with the layer 
above and below it

 Advantages:
 As long as a new layer knows how to talk to the layer 

above and below, it can be swapped out with an old layer
 New layers can be added on top

 Disadvantages:
 It's hard to divide systems into hierarchical layers
 It can be inefficient to prevent one layer from talking 

directly to one much lower or higher
 Some services at each layer are redundant
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 Pipe-and-filter architectures send data in one direction through a series of components
 The output of one stage is the input of the next
 Each stage transforms the data in some way
 Examples:
 Linux command-line piping

 Java stream filtering
 Stages of a compiler

 Advantages:
 Good for serial data processing
 Modular components that have the same input and output can be reused in different sequences

 Disadvantage: No error recovery if something breaks in the middle

sort foo.txt | grep -i error | head -n 10 > out.txt



 Event-driven architectures react to events, changes in the state 
of the system
 GUIs are a common example of event-driven architectures

 Event generator create events
 Event channels send the event to the appropriate event handlers

 Advantages:
 Adding new event generators and handlers allows for an extensible 

system
 Good for reactive systems

 Disadvantage: Timing can be complicated, especially for shared 
resources
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 We talk about the previous architectures because they're models that 
have been successful in the past

 Most real systems are a mix of different architectures
 The whole system could be one architecture, but its components have their own
 A system could be mostly one architecture but break a couple of rules
 There can be different ways of looking at the same system

 Example: OS kernel
 Event-driven because it has interrupt handlers to respond to signals from the 

hardware
 Client/server because applications that make system calls are making requests
 Layered because file systems and networking operate with layers from the 

generic operation down to the requirements of particular hardware





 State machines
 UML



 Form teams for Assignments 1 and 2 and Project 1 if you 
haven't
 Assignment 1 is due next Friday!

 Read sections 1.5 and 1.6
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