
Week 1 - Wednesday

 What did we talk about last time?
 Course overview
 Policies
 Schedule
 GNU style
 Systems

 You might recall that the sizes of integer types in C are a little bit
mushy:
 short: at least 2 bytes
 long: at least 4 bytes
 int: between the size of short and long

 This can be frustrating when you need a type to hold a specific
amount of data

 In Java, the sizes of types are fully specified
 short: 2 bytes
 long: 8 bytes
 int: 4 bytes

 Although it's a bit ugly, C99 specifies types with fixed sizes
 To use them, #include <stdint.h>
 Then, you're guaranteed the following:
 int8_t 1 byte (8 bits), signed
 int16_t 2 bytes (16 bits), signed
 int32_t 4 bytes (32 bits), signed
 uint8_t 1 byte (8 bits), unsigned
 uint16_t 2 bytes (16 bits), unsigned
 uint32_t 4 bytes (32 bits), unsigned

 And you probably get int64_t and uint64_t as well

 If you want to print an int, you use %d
 If you want to print an int32_t, what do you do?
 There are some (ugly) macros used:
 PRId8
 PRId16
 PRId32
 PRId64

 You can use these macros for octal or hex by changing d to o
or x, e.g. PRIx32

 To use these macros, #include <inttypes.h>
 Note that inttypes.h includes stdint.h, so you can kill two birds with one

stone
 These macros are special strings
 There's an obscure rule in C that treats consecutive strings literals like a

single string literal:
 "goats" "boats" "moats" is the same to the compiler as
"goatsboatsmoats"

 To use a macro, it has to "float" in between the rest of a formatting string

int a = 7;
int32_t b = 7;
printf ("Value: %d\n", a); // int version
printf ("Value: %" PRId32 "\n", b); // int32_t version

 Computer systems create a platform for applications
 They provide tools and environments that are needed for other

things
 They don't exist in isolation

 Computer systems have semiotics
 They use symbols for communication

 Systems entail complexity
 As they get complex, there are unintended consequences

 It's worth thinking about these themes when designing or
using computer systems

 An issue that comes up frequently when designing computer
systems is scarcity of resources:
 Computers have limited numbers of cores
 Applications have access to a finite amount of memory
 Networking bandwidth is limited
 Access to shared resources has to be controlled to prevent

applications from stopping each other's work or corrupting it
 The problem of scarcity can be approached, in part, with

tradeoffs
 Using a greater amount of one resource in order to free up another

 Space/time tradeoff
 Sometimes using more resources can allow faster execution
 Example: Buffer sizes in communication
 Example: Hash tables from data structures

 Interface abstraction
 Treating different things through a common abstraction makes a system simpler

▪ But it also prevents optimization
 Example: Linux treats networking, files, and many memory accesses like reading

and writing to files
 Security vs. usability
 Greater security always entails less usability
 Different products need the balance at different levels

 Complexity refers to systems with emergent properties
 Emergent properties are those that aren't obvious when looking

at a design
 The interactions inside a system can lead to unexpected situations
 Examples:
 There are situations where increasing the amount of system memory

worsens performance
 Deadlock is a situation where two processes trying to get access to

something make it impossible for either one to get it
 Priority inversion is a case where a high-priority process can be prevented

from running by a low-priority process

 Because of complexity, reliability is elusive
 Redundancy helps provide reliability
 Having a back-up component ready when another component fails

reduces the chance of total failure
 Sending redundant messages can make networking protocols more

reliable
 Complexity also creates misunderstanding
 It's hard to know what really causes an error
 Anyone who's debugged code knows this problem

 Semiotics means the use and interpretation of symbols
 The semiotics of a message involves:
 Syntax: Rules for making valid messages
 Semantics: The meaning of symbols
 Pragmatics: Relationship between the message and the entity

reading the message
 The semiotics of computer systems can involve

communication between two machines, a machine and a
human, or a machine and the outside world

 Communication between machines is the easiest of the three to
describe

 However, machines send and receive bits that mean nothing
without context

 Consider the bit sequence 10101110, which could be interpreted in
C as:
 Signed integer: -82
 Unsigned integer: 174
 Character: '®'
 Bitmask: 0xAE

 Humans don't understand computers at an instinctive level
 CS education is a kind of brain damage to make us think more like machines
 If you don't quite understand the semantics of a line of C or Java, you might be

surprised by the output
 But other things like the concept of "happening at the same time" mean

different things to humans and computers
 Example:
 int x = 14;
 Now, these lines of code execute on two different threads, at nearly the same time:
 x = x + 1;
 x = x – 1;
 What are the possible values of x?

 Computers are models of the real world
 We mostly ignore that and treat the computer as a kind of reality
 Problems that crop up:
 Floating-point values are only approximations of real numbers
▪ Even "simple" numbers like 0.1 can't be exactly represented with the usual system

 The values 0 and 1 are represented by voltages
▪ Occasionally, (especially when overclocking), a voltage that should be a 1 is read as a

0, or vice versa

 Cosmic rays occasionally flip bits inside our machines
 Getting machines to agree on issues of timing is difficult

 System architectures are models of systems that describe:
 Relationships between entities in the system
 Ways the entities communicate

 Different architectural styles have pros and cons
 Using a certain style can have big impacts on system performance
 Common styles:
 Client/server
 Peer-to-peer (P2P)
 Layered
 Pipe-and-filter
 Event-driven
 Hybrid

 This book considers client/server architectures
from the perspective of a many clients
connecting to a single server
 If you recall, the Software Engineering book

describes client/server as a system with many
servers, each of which offer a single service

 How does a client know how to reach the server?
 Uniform resource identifier (URI) is a common way:

www.goats.net/image.jpg
 Client/server architectures depend on protocols

to define how clients can request services and
understand the response

Server

Client 1

Client 2

Client 3Client 4

Client 5

http://www.goats.net/image.jpg

ADVANTAGES

 Updates are simple, because only the
server needs to be updated

 Only the server needs to be checked
for security problems or data
corruption

DISADVANTAGES

 Single point of failure

 To reduce the single point of failure problem, it's common to have multiple servers
that offer the same services or files

 To work, these servers must coordinate with each other when one is updated

 If more and more servers are used, the architecture
begins to look like a P2P architecture
 BitTorrent
 DNS

 In P2P, there is usually no distinction between
clients and servers, since most entities act as both

 Advantages:
 Service scales, staying the same or improving as the

number of users goes up
 Disadvantages:
 Security: A corrupted node can be hard to detect
 Administration: Propagating changes can be difficult

Node 1

Node 2

Node 3Node 4

Node 5

 Layered architectures divide systems into a strict
hierarchy of components

 Each layer can only communicate with the layer
above and below it

 Advantages:
 As long as a new layer knows how to talk to the layer

above and below, it can be swapped out with an old layer
 New layers can be added on top

 Disadvantages:
 It's hard to divide systems into hierarchical layers
 It can be inefficient to prevent one layer from talking

directly to one much lower or higher
 Some services at each layer are redundant

Persistence Layer

Services Layer

Business Layer

Presentation Layer

 Pipe-and-filter architectures send data in one direction through a series of components
 The output of one stage is the input of the next
 Each stage transforms the data in some way
 Examples:
 Linux command-line piping

 Java stream filtering
 Stages of a compiler

 Advantages:
 Good for serial data processing
 Modular components that have the same input and output can be reused in different sequences

 Disadvantage: No error recovery if something breaks in the middle

sort foo.txt | grep -i error | head -n 10 > out.txt

 Event-driven architectures react to events, changes in the state
of the system
 GUIs are a common example of event-driven architectures

 Event generator create events
 Event channels send the event to the appropriate event handlers

 Advantages:
 Adding new event generators and handlers allows for an extensible

system
 Good for reactive systems

 Disadvantage: Timing can be complicated, especially for shared
resources

Event
Generator

Event
Channel

Event
Processing

Event
Handler 1

Event
Handler 2

Event
Handler 3

 We talk about the previous architectures because they're models that
have been successful in the past

 Most real systems are a mix of different architectures
 The whole system could be one architecture, but its components have their own
 A system could be mostly one architecture but break a couple of rules
 There can be different ways of looking at the same system

 Example: OS kernel
 Event-driven because it has interrupt handlers to respond to signals from the

hardware
 Client/server because applications that make system calls are making requests
 Layered because file systems and networking operate with layers from the

generic operation down to the requirements of particular hardware

 State machines
 UML

 Form teams for Assignments 1 and 2 and Project 1 if you
haven't
 Assignment 1 is due next Friday!

 Read sections 1.5 and 1.6

	COMP 3400
	Last time
	Questions?
	Assignment 1
	Fixed Width Types
	The problem
	Fixed width types
	What about printing those things?
	Using the print macros
	Course Themes
	Themes from the book
	Scarcity of resources
	Tradeoffs
	Complexity
	Consequences of complexity
	Semiotics
	Machine to machine communication
	Machine to human communication
	Machine to world communication
	System Architectures
	System architectures
	Client/server architectures
	Client/server advantages and disadvantages
	Peer-to-peer (P2P) architectures
	Layered architectures
	Pipe-and-filter architectures
	Event-driven architectures
	Hybrid architectures
	Upcoming
	Next time…
	Reminders

